Restoration of vasodilation and CBF autoregulation by genistein in rat pial artery after brain injury.
نویسندگان
چکیده
This study determined whether, after fluid percussion injury (FPI), tyrosine kinase activation is coupled to inhibition of K(+) channels and alteration in cerebral blood flow (CBF) autoregulation in the rat pial artery. Injury of moderate severity (2--2.5 atm) was produced by FPI in anesthetized rats equipped with a closed cranial window. The suppressed vasodilation of the pial arterioles to calcitonin gene-related peptide (CGRP) and levcromakalim (LMK) and altered lower limit of CBF autoregulation after FPI were restored by genistein but not by daidzein, an inactive analog. Vasodilation to S-nitroso-N-acetyl penicillamine (0.1--10 micromol/l) was, however, little influenced after FPI. The restored vasodilation was decreased by sodium orthovanadate, suggesting the reciprocal action of tyrosine phosphorylation and dephosphorylation. After FPI, CGRP-induced vasodilation restored by genistein (10 micromol/l) was strongly antagonized by iberiotoxin but not by glibenclamide, whereas LMK-induced vasodilation was, in contrast, inhibited by glibenclamide but not by iberiotoxin. Taken together, we suggest that, after FPI, activation of tyrosine kinase links the inhibition of K(+) channels to impaired autoregulatory vasodilation in response to acute hypotension and alteration in CBF autoregulation in the rat pial artery.
منابع مشابه
AHEART February 47/2
Shin, Hwa Kyoung, Yung Woo Shin, and Ki Whan Hong. Role of adenosine A2B receptors in vasodilation of rat pial artery and cerebral blood flow autoregulation. Am. J. Physiol. Heart Circ. Physiol. 278: H339–H344, 2000.—This study was aimed to investigate the underlying mechanism of vasodilation induced by the activation of A2B adenosine receptors in relation to cerebral blood flow (CBF) autoregul...
متن کاملGene transfer of Cu/Zn SOD to cerebral vessels prevents FPI-induced CBF autoregulatory dysfunction.
The goal of this study was to determine whether gene transfer of human copper-zinc (Cu/Zn) superoxide dismutase (SOD) has preventive effects on cerebral blood flow (CBF) autoregulatory dysfunction after fluid percussion injury (FPI). Rats subjected to FPI (2-2.5 atm) exhibited enhanced activity of reduced NADP (NADPH) oxidase in the cerebral vasculature. In line with these findings, the rats sh...
متن کاملSelective blockade of AT1 receptor attenuates impairment of hypotensive autoregulation and improves cerebral blood flow after brain injury in the newborn pig.
BACKGROUND Fluid percussion injury (FPI) in piglets produces vasoconstriction of pial arteries (PAs), decreases in cerebral blood flow (CBF), and impairment of hypotensive autoregulation. Two types of angiotensin II receptors, AT1 and AT2, have been identified in the brain. This study characterized the effect of pretreatment with AT1- and AT2-selective antagonists on CBF and hypotensive autoreg...
متن کاملMathematical simulation of cerebral blood flow in focal ischemia.
A computer model was developed to describe regional cerebral blood flow and tissue oxygenation with autoregulation during focal ischemia produced by occlusion of th middle cerebral artery (MCA). This steady state model described the distribution of blood flow in the cerebral arterial system including the circle of Willis as well as the pial arterial anastomoses, and included a simplified form o...
متن کاملActive dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke.
Pial arterioles actively change diameter to regulate blood flow to the cortex. However, it is unclear whether arteriole reactivity and its homeostatic role of conserving red blood cell (RBC) flux remains intact after a transient period of ischemia. To examine this issue, we measured vasodynamics in pial arteriole networks that overlie the stroke penumbra during transient middle cerebral artery ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 281 1 شماره
صفحات -
تاریخ انتشار 2001